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Abstract
For an invertible (bounded) linear operator Q acting in a Hilbert space
H, we consider the consequences of the QT -symmetry of a non-hermitian
Hamiltonian H : H → H where T is the time-reversal operator. If H is
symmetric in the sense that T H †T = H , then QT -symmetry is equivalent
to Q−1-weak-pseudo-hermiticity. But in general this equivalence does not
hold. We show this using some specific examples. Among these is a large
class of non-PT -symmetric Hamiltonians that share the spectral properties of
PT -symmetric Hamiltonians.

PACS number: 03.65.−w

1. Introduction

Among the motivations for the study of thePT -symmetric quantum mechanics is the argument
that PT -symmetry is a more physical condition than hermiticity because PT -symmetry refers
to ‘spacetime reflection symmetry’ whereas hermiticity is ‘a mathematical condition whose
physical basis is somewhat remote and obscure’ [1]. This statement is based on the assumption
that the operatorsP and T continue to keep their standard meanings, as parity (space)-reflection
and time-reversal operators, also in PT -symmetric quantum mechanics. But this assumption
is not generally true, for unlike T the parity operator P loses its connection to physical space
once one endows the Hilbert space with an appropriate inner product to reinstate unitarity.
This is because for a general PT -symmetric Hamiltonian, such as H = p2 + x2 + ix3, the
x-operator is no longer a physical observable, the kets |x〉 do not correspond to localized states
in space, and P := ∫ ∞

−∞ dx|x〉〈−x| does not mean space-reflection [2, 3]1. Furthermore, it
turns out that one cannot actually avoid using the mathematical operations such as hermitian

1 The space reflection operator is given by
∫ ∞
−∞ dx|ξ (x)〉〈ξ (−x)|, where |ξ (x)〉 denote the (localized) eigenkets of the

pseudo-hermitian position operator X [2].

1751-8113/08/055304+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/5/055304
mailto:amostafazadeh@ku.edu.tr
http://stacks.iop.org/JPhysA/41/1


J. Phys. A: Math. Theor. 41 (2008) 055304 A Mostafazadeh

conjugation (A → A†) 2 or transposition (A → At := T A†T ) in defining the notion of an
observable in PT -symmetric quantum mechanics [4, 5].

What makes PT -symmetry interesting is not its physical appeal but the fact that PT is
an antilinear operator3. In fact, the spectral properties of PT -symmetric Hamiltonians [6]
that have made them a focus of recent interest follow from this property. In general, if a
linear operator H commutes with an antilinear operator �, the spectrum of H may be shown
to be pseudo-real, i.e., as a subset of complex plane it is symmetric about the real axis. In
particular, nonreal eigenvalues of H come in complex-conjugate pairs. If H is a diagonalizable
operator with a discrete spectrum the latter condition is necessary and sufficient for the pseudo-
hermiticity of H [7].

In [8], we showed that the spectrum of the Hamiltonian H = p2 + zδ(x) is real and that
one can apply the methods of pseudo-hermitian quantum mechanics [2] to identify H with the
Hamiltonian of a unitary quantum system provided that the real part of z does not vanish4.
This Hamiltonian is manifestly non-PT -symmetric. The purpose of this paper is to offer other
classes of non-PT -symmetric Hamiltonians that enjoy the same spectral properties.

In the following, we shall use H and T to denote a (separable) Hilbert space and an
invertible antilinear operator acting in H, respectively. For H = L2(Rd), we define T by [9]

(T ψ)(�x) := ψ(�x)∗, (1)

for all ψ ∈ L2(Rd) and �x ∈ R
d . For H = C

N , we identify it with complex conjugation: for
all �z ∈ C

N ,

T �z := �z∗. (2)

2. QT -symmetry

Consider a Hamiltonian operator H acting in H and commuting with an arbitrary invertible
antilinear operator �. Because T is also invertible and antilinear, we can express � as
� = QT where Q := �T is an invertible linear operator. This suggests the investigation of
QT -symmetric Hamiltonians H,

[H,QT ] = 0, (3)

where Q is an invertible linear operator. Note that Q need not be a hermitian operator or an
involution, i.e., in general Q† �= Q and Q2 �= 1.

We can easily rewrite (3) in the form

T HT = Q−1HQ. (4)

This is similar to the condition that H is Q−1-weakly-pseudo-hermitian [12–15]:

H † = Q−1HQ. (5)

In fact, (4) and (5) coincide if and only if

T H †T = H. (6)

The left-hand side of this relation is the usual ‘transpose’ of H that we denote by Ht . Therefore,
QT -symmetry is equivalent to Q−1-weak-pseudo-hermiticity if and only if Ht = H , i.e., H

2 The adjoint A† of an operator A : H → H is defined by the condition 〈ψ |Aφ〉 = 〈A†|φ〉, where 〈·|·〉 is the defining
inner product of the Hilbert space H.
3 This means that PT (a1ψ1 + a2ψ2) = a∗

1PT ψ1 + a∗
2PT ψ2, where a1, a2 are complex numbers and ψ1, ψ2 are

state vectors.
4 Otherwise, H has a spectral singularity and it cannot define a unitary time-evolution regardless of the choice of the
inner product.
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is symmetric5. For example, let �a and v be respectively complex vector and scalar potentials,
�x ∈ R

d and d ∈ Z
+. Then the Hamiltonian6

H = [ �p − �a(�x)]2

2m
+ v(�x) (7)

is symmetric if and only if �a = �0. Supposing that �a and v are analytic functions, the
QT -symmetry of (7), i.e., (4) is equivalent to

[ �p + �a(�x)∗]2

2m
+ v(�x)∗ = [ �pQ − �a(�xQ)]2

2m
+ v(�xQ), (8)

where for any linear operator L : H → H, we have LQ := Q−1LQ. Similarly, the Q−1-weak-
pseudo-hermiticity of H, i.e., (5) means

[ �p − �a(�x)∗]2

2m
+ v(�x)∗ = [ �pQ − �a(�xQ)]2

2m
+ v(�xQ). (9)

As seen from (8) and (9), there is a one-to-one correspondence between QT -symmetric and
Q−1-weak-pseudo-hermitian Hamiltonians of the standard form (7), namely that given such a
QT -symmetric Hamiltonian H with vector and scalar potentials v and a, there is a Q−1-weak-
pseudo-hermitian Hamiltonian H ′ with vector and scalar potentials v′ = v and a′ = ia. Note,
however, that H and H ′ are not generally isospectral.

3. A class of matrix models

Consider two-level matrix models defined on the Hilbert space H = C
2 endowed with

the Euclidean inner product 〈·|·〉. In the following, we explore the QT -symmetry and

Q−1-weak-pseudo-hermiticity of a general Hamiltonian H = (
a b
c d

)
for Q = (

1 0
q 1

)
, where

a, b, c, d, q ∈ C.

3.1. QT -symmetric two-level systems

Imposing the condition that H is QT -symmetric (i.e., equation (4) holds) restricts q to real
and imaginary values, and leads to the following forms for the Hamiltonian.

• For real q:

H =
(

a 0
c a

)
, a, c ∈ R. (10)

In this case, H is a non-diagonalizable operator with a real spectrum consisting of a.
• For imaginary q (q = iq with q ∈ R − {0}):

H =
(

a − i
2bq b

c + i
2 (a − d)q d + i

2bq

)
, a, b, c, d ∈ R. (11)

In this case the eigenvalues of H are given by E± = 1
2

[
a+d ±

√
(a − d)2 − b(bq2 − 4c)

]
.

Therefore, for (a−d)2 � b(bq2−4c),H is a diagonalizable operator with a real spectrum;

5 It is a common practice to identify operators with matrices and define the transpose of an operator H as the operator
whose matrix representation is the transpose of the matrix representation of H. Because one must use a basis to
determine the matrix representation, unlike Ht := T H †T , this definition of transpose is basis-dependent. Note
however that Ht agrees with this definition if one uses the position basis {|�x〉} in L2(Rd ) and the standard basis
in C

N .
6 Non-hermitian Hamiltonians of this form have been used in modeling localization effects in condensed matter
physics [16].
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and for (a − d)2 < b(bq2 − 4c),H is diagonalizable but its spectrum consists of a pair
of (complex-conjugate) non-real eigenvalues. Furthermore, the degeneracy condition
(a − d)2 = b(bq2 − 4c) marks an exceptional spectral point [10, 11] where H becomes
non-diagonalizable. In fact, for a = d and b = 0 this condition is satisfied and H takes
the form (10). Therefore, (11) gives the general form of QT -symmetric Hamiltonians
provided that q ∈ R.

3.2. Q−1-weakly-pseudo-hermitian two-level systems

Demanding that H is Q−1-weakly-pseudo-hermitian does not pose any restriction on the value
of q. It yields the following forms for the Hamiltonian.

• For q = 0:

H =
(

a b1 + ib2

b1 − ib2 d

)
, a, b1, b2, d ∈ R. (12)

In this case Q is the identity operator and H = H †. Therefore, H is a diagonalizable
operator with a real spectrum.

• For q �= 0:

H =
(

a1 + ia2 − 2ia2
q

2ia2
q∗ a1 − ia2

)
, a1, a2 ∈ R, q ∈ C − {0}. (13)

In this case the eigenvalues of H are given by E± = a1 ± |a2||q|−1
√

4 − |q|2. Therefore,
for |q| < 2,H is a diagonalizable operator with a real spectrum; and for |q| > 2,H

is diagonalizable but its spectrum consists of a pair of (complex-conjugate) non-real
eigenvalues. Again the degenerate case: |q| = 2 corresponds to an exceptional point
where H becomes non-diagonalizable.

Comparing (11) with (12) and (13) we see that QT -symmetry and Q−1-weak-pseudo-
hermiticity are totally different conditions on a general non-symmetric Hamiltonian7. For a
symmetric Hamiltonian, we can easily show using (12) and (13) that q is either real or imaginary
and that H takes the form (11). The converse is also true, i.e., any symmetric Hamiltonian
of the form (11) is either real (and hence hermitian) or has the form (13). In summary,
QT -symmetry and Q−1-weak-pseudo-hermiticity coincide if and only if the Hamiltonian is a
symmetric matrix.

4. Unitary Q and a class of non-PT -symmetric Hamiltonians with a pseudo-real
spectrum

If Q is a unitary operator, the Q−1-weak-pseudo-hermiticity (5) of a Hamiltonian H implies
its Q-weak-pseudo-hermiticity, i.e., H † = Q−1HQ. This together with (5) leads in turn to

[H,Q2] = 0, (14)

i.e., Q2 is a symmetry generator. In the following, we examine some simple unitary choices
for Q and determine the form of the Q−1-weak-pseudo-hermitian and QT -symmetric standard
Hamiltonians.

7 Note that this is not in conflict with the fact that in view of the spectral theorems of [12, 17, 18] both of these
conditions imply pseudo-hermiticity of the Hamiltonian albeit with respect to a pseudo-metric operator that differs
from Q−1 [15].
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Consider a standard non-hermitian Hamiltonian (7) in one dimension and let

Q = e
i�p
h̄ (15)

for some � ∈ R
+. Then introducing

a1 := 
(a), a2 := �(a), v1 := 
(v), v2 := �(v),

where 
 and � stand for the real and imaginary parts of their argument, and using the identities

Q−1pQ = p, Q−1xQ = x − �, (16)

we can express the condition of the Q−1-weak-pseudo-hermiticity of H, namely (9), in the
form

a1(x − �) = a1(x), a2(x − �) = −a2(x), (17)
v1(x − �) = v1(x), v2(x − �) = −v2(x). (18)

This means that the real parts of the vector and scalar potentials are periodic functions with
period � while their imaginary parts are antiperiodic with period �. This confirms (14), for H
is invariant under the translation, x → x + 2�, generated by Q2. We can express a1, v1 and
a2, v2 in terms of their Fourier series. These have, respectively, the following forms

�-periodic real parts:
∞∑

n=0

[
c1n cos

(
2nπx

�

)
+ d1n sin

(
2nπx

�

)]
, (19)

�-antiperiodic imaginary parts:
∞∑

n=0

[
c2n cos

(
(2n + 1)πx

�

)
+ d2n sin

(
(2n + 1)πx

�

)]
, (20)

where ckn and dkn are real constants for all k ∈ {1, 2} and n ∈ {0, 1, 2, . . .}.
Conversely, if the real and imaginary parts of both the vector and scalar potentials have

respectively the form (19) and (20), the Hamiltonian is Q−1-weak-pseudo-hermitian. In
particular its spectrum is pseudo-real; its complex eigenvalues come in complex-conjugate
pairs. These Hamiltonians that are generally non-PT -symmetric acquire QT -symmetry
provided that they are symmetric, i.e., a1 = a2 = 0. A simple example is

H = p2

2m
+ λ1 sin(2kx) + iλ2 cos(5kx),

where λ1, λ2 ∈ R and k := �−1 ∈ R
+.

Next, we examine the condition of QT -symmetry of H, i.e. (8). In view of (16), this
condition is equivalent to (18) and

a1(x − �) = −a1(x), a2(x − �) = a2(x), (21)

which replaces (17). Therefore, v has the same form as for the case of a Q−1-weak-pseudo-
hermitian Hamiltonian but a has �-antiperiodic real and �-periodic imaginary parts. In
particular, the Fourier series for the real and imaginary parts of a have respectively the
form (20) and (19).

We again see that general QT -symmetric Hamiltonians of the standard form (7) are
invariant under the translation x → x + 2�. This is indeed to be expected, because in view of
[Q, T ] = 0 we can express (4) in the form

H = Q−1T HT Q (22)

and use this identity to establish

Q2H = QT HT Q = QT (Q−1T HT Q)T Q = HQ2.

5



J. Phys. A: Math. Theor. 41 (2008) 055304 A Mostafazadeh

The results obtained in this section admit a direct generalization to higher-dimensional
standard Hamiltonians. This involves identifying Q with a translation operator of the form

e
i��· �p
h̄ for some �� ∈ R

3 − {�0}. It yields QT -symmetric and Q−1-weakly-pseudo-hermitian
Hamiltonians with a pseudo-real spectrum that are invariant under the translation �x → �x −2��.

An alternative generalization of the results of this section to (two and) three dimensions
is to identify Q with a rotation operator:

Q = e
iϕn̂· �J

h̄ , (23)

where ϕ ∈ (0, 2π), n̂ is a unit vector in R
3 and �J is the angular momentum operator. Again

[Q, T ] = 0 and we obtain generally non-PT -symmetric, Q−1-weak-pseudo-hermitian and
QT -symmetric Hamiltonians with a pseudo-real spectrum that are invariant under rotations
by an angle 2ϕ about the axis defined by n̂.

Choosing a cylindrical coordinate system whose z-axis is along n̂, we can obtain the
general form of such standard Hamiltonians.

The Q−1-weak-pseudo-hermiticity of H implies that the real and imaginary parts of the
vector and scalar potentials (that we identify with labels 1 and 2, respectively) satisfy

�a1(ρ, θ − ϕ, z) = �a1(ρ, θ, z), �a2(ρ, θ − ϕ, z) = −�a2(ρ, θ, z), (24)

v1(ρ, θ − ϕ, z) = v1(ρ, θ, z), v2(ρ, θ − ϕ, z) = −v1(ρ, θ, z), (25)

where (ρ, θ, z) stand for cylindrical coordinates. Similarly, the QT -symmetry yields (25) and

�a1(ρ, θ − ϕ, z) = −�a1(ρ, θ, z), �a2(ρ, θ − ϕ, z) = �a2(ρ, θ, z). (26)

Again we can derive the general form of the Fourier series for these potentials. Here, we
suffice to give the form of the general symmetric Hamiltonian:

H = �p2

2m
+

∞∑
n=0

[en(ρ, z) cos(2nωθ) + fn(ρ, z) sin(2nωθ)

+ i{gn(ρ, z) cos[(2n + 1)ωθ ] + hn(ρ, z) sin[(2n + 1)ωθ ]}], (27)

where en, fn, gn and hn are real-valued functions and ω := ϕ−1 ∈ R
+.

5. A QT -symmetric and non-PT -symmetric Hamiltonian with a real spectrum

In the preceding section we examined QT -symmetric Hamiltonians with a unitary Q. Because
P is also a unitary operator, QT -symmetry with unitary Q may be considered as a less drastic
generalization of PT -symmetry. In this section we explore a QT -symmetric model with a
non-unitary Q.

Let a and a† be the bosonic annihilation and creation operators acting in L2(R) and
satisfying [a, a†] = 1, q ∈ C − {0}, and8

Q := eqa. (28)

Consider the Hamiltonian operator

H = αa2 + βa†2
+ γ {a, a†} + ma + na†, (29)

where α, β, γ,m, n ∈ C, and demand that H be QT -symmetric. Inserting (29) in (4) and
using (1) and the identity Q−1a†Q = a† − q, we obtain

α∗ = α, β∗ = β, γ ∗ = γ, m∗ = m − 2γ q, n∗ = n − 2βq, nq = 0.

8 The Q considered in section 3 may be viewed as a fermionic analog of (28).
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In particular, because q �= 0, we have n = 0 which in turn implies β = 0. Furthermore,
assuming that γ �= 0, we find that q must be purely imaginary, q = iq with q ∈ R − {0}, and
�(m) = γ q. In view of these observations, H takes the following simple form,

H = αa2 + γ {a, a†} + (µ + iγ q)a, (30)

where µ := 
(m), α, µ ∈ R, and γ, q ∈ R − {0}.
Recalling that PaP = −a and T aT = a, we see that for µ �= 0, the QT -symmetric

Hamiltonian (30) is non-PT -symmetric. We also expect that it must have a pseudo-real
spectrum. It turns out that actually the spectrum of H can be computed exactly.

To obtain the spectrum of H we use its representation in the basis consisting of the standard
normalized eigenvectors |n〉 of the number operator a†a. Using the following well-known
properties of |n〉 [19],

a|n〉 = √
n |n − 1〉, a†|n〉 =

√
n + 1 |n + 1〉,

we find for all m, n ∈ {0, 1, 2, . . .},
Hmn := 〈m|H |n〉 = γ (2n + 1)δmn + (µ + iγ q)

√
n δm,n−1 + α

√
n(n − 1) δm,n−2.

As seen from this relation the matrix (Hmn) is upper-triangular with distinct diagonal entries
and up to three nonzero terms in each row. This implies that the eigenvalues En of (Hmn) are
identical with its diagonal entries, i.e., En = γ (2n + 1). In particular, H has a discrete, equally
spaced, real spectrum that is positive for γ > 0. In the latter case, H is isospectral to a simple
harmonic oscillator Hamiltonian with ground-state energy γ .

It is not difficult to see that for each n ∈ {0, 1, 2, . . .} the span of {|0〉, |1〉, . . . , |n〉}, which
we denote by Hn, is an invariant subspace of H. This observation allows for the construction of
a complete set of eigenvectors of H and establishes the fact that H is a diagonalizable operator
with a discrete real spectrum. Therefore, in view of a theorem proven in [20], it is related to a
hermitian operator via a similarity transformation, i.e., it is quasi-hermitian [21].

The existence of the invariant subspace Hn also implies that the eigenvectors |ψn〉 of
H corresponding to the eigenvalue En belong to Hn, i.e., |ψn〉 is a linear combination of
|0〉, |1〉, . . . , |n − 1〉 and |n〉. This in turn allows for a calculation of |ψn〉. For example,

|ψ0〉 = c0|0〉, |ψ1〉 = c1

[
|0〉 +

(
2γ

m

)
|1〉

]
,

|ψ2〉 = c2

[
|0〉 +

(
4γm

m2 + αγ

)
|1〉 +

(
2
√

2γ 2

m2 + αγ

)
|2〉

]
,

where c0, c1, c2 are arbitrary nonzero normalization constants and m = µ + iγ q.

6. Concluding remarks

It is often stated that PT -symmetry is a special case of pseudo-hermiticity because PT -
symmetric Hamiltonians are manifestly P-pseudo-hermitian. This reasoning is only valid for
symmetric Hamiltonians H that satisfy H † = T HT . In general to establish the claim that
PT -symmetry is a special case of pseudo-hermiticity one needs to make use of the spectral
theorems of [12, 17, 18]. Indeed what makes PT -symmetric Hamiltonians interesting is the
pseudo-reality of their spectrum. This is a general property of all Hamiltonians that are weakly
pseudo-hermitian or possess a symmetry that is generated by an invertible antilinear operator.
We call the latter QT -symmetric.

In this paper, we have examined in some detail the similarities and differences between
QT -symmetry and Q−1-weak-pseudo-hermiticity and obtained large classes of symmetric

7
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as well as asymmetric non-PT -symmetric Hamiltonians that share the spectral properties of
the PT -symmetric Hamiltonians. In particular, we considered the case that Q is a unitary
operator and showed that in this case QT -symmetry and Q−1-weak-pseudo-hermiticity imply
Q2-symmetry of the Hamiltonian. We also explored a concrete example of a QT -symmetric
Hamiltonian with a non-unitary Q that is not PT -symmetric. We determined the spectrum of
this Hamiltonian, established its diagonalizability and showed that it is indeed quasi-hermitian.
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