${ }^{\mathcal{Q T}}$-symmetry and weak pseudo-hermiticity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41055304
(http://iopscience.iop.org/1751-8121/41/5/055304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.152
The article was downloaded on 03/06/2010 at 07:23

Please note that terms and conditions apply.

$\mathcal{Q T}$-symmetry and weak pseudo-hermiticity

Ali Mostafazadeh
Department of Mathematics, Koç University, 34450 Sariyer, Istanbul, Turkey
E-mail: amostafazadeh@ku.edu.tr

Received 26 September 2007, in final form 13 December 2007
Published 23 January 2008
Online at stacks.iop.org/JPhysA/41/055304

Abstract

For an invertible (bounded) linear operator \mathcal{Q} acting in a Hilbert space \mathcal{H}, we consider the consequences of the $\mathcal{Q T}$-symmetry of a non-hermitian Hamiltonian $H: \mathcal{H} \rightarrow \mathcal{H}$ where \mathcal{T} is the time-reversal operator. If H is symmetric in the sense that $\mathcal{T} H^{\dagger} \mathcal{T}=H$, then $\mathcal{Q T}$-symmetry is equivalent to \mathcal{Q}^{-1}-weak-pseudo-hermiticity. But in general this equivalence does not hold. We show this using some specific examples. Among these is a large class of non- $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians that share the spectral properties of $\mathcal{P} \mathcal{I}$-symmetric Hamiltonians.

PACS number: 03.65.-w

1. Introduction

Among the motivations for the study of the $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics is the argument that $\mathcal{P} \mathcal{T}$-symmetry is a more physical condition than hermiticity because $\mathcal{P} \mathcal{T}$-symmetry refers to 'spacetime reflection symmetry' whereas hermiticity is 'a mathematical condition whose physical basis is somewhat remote and obscure' [1]. This statement is based on the assumption that the operators \mathcal{P} and \mathcal{T} continue to keep their standard meanings, as parity (space)-reflection and time-reversal operators, also in $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics. But this assumption is not generally true, for unlike \mathcal{T} the parity operator \mathcal{P} loses its connection to physical space once one endows the Hilbert space with an appropriate inner product to reinstate unitarity. This is because for a general $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian, such as $H=p^{2}+x^{2}+\mathrm{i} x^{3}$, the x-operator is no longer a physical observable, the kets $|x\rangle$ do not correspond to localized states in space, and $\mathcal{P}:=\int_{-\infty}^{\infty} \mathrm{d} x|x\rangle\langle-x|$ does not mean space-reflection [2, 3] ${ }^{1}$. Furthermore, it turns out that one cannot actually avoid using the mathematical operations such as hermitian
${ }^{1}$ The space reflection operator is given by $\int_{-\infty}^{\infty} \mathrm{d} x\left|\xi^{(x)}\right\rangle\left\langle\xi^{(-x)}\right|$, where $\left|\xi^{(x)}\right\rangle$ denote the (localized) eigenkets of the pseudo-hermitian position operator X [2].
conjugation $\left(A \rightarrow A^{\dagger}\right)^{2}$ or transposition $\left(A \rightarrow A^{t}:=\mathcal{T} A^{\dagger} \mathcal{T}\right)$ in defining the notion of an observable in $\mathcal{P} \mathcal{T}$-symmetric quantum mechanics [4, 5].

What makes $\mathcal{P} \mathcal{T}$-symmetry interesting is not its physical appeal but the fact that $\mathcal{P} \mathcal{T}$ is an antilinear operator ${ }^{3}$. In fact, the spectral properties of $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians [6] that have made them a focus of recent interest follow from this property. In general, if a linear operator H commutes with an antilinear operator Θ, the spectrum of H may be shown to be pseudo-real, i.e., as a subset of complex plane it is symmetric about the real axis. In particular, nonreal eigenvalues of H come in complex-conjugate pairs. If H is a diagonalizable operator with a discrete spectrum the latter condition is necessary and sufficient for the pseudohermiticity of H [7].

In [8], we showed that the spectrum of the Hamiltonian $H=p^{2}+z \delta(x)$ is real and that one can apply the methods of pseudo-hermitian quantum mechanics [2] to identify H with the Hamiltonian of a unitary quantum system provided that the real part of z does not vanish ${ }^{4}$. This Hamiltonian is manifestly non $-\mathcal{P} \mathcal{T}$-symmetric. The purpose of this paper is to offer other classes of non- $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians that enjoy the same spectral properties.

In the following, we shall use \mathcal{H} and \mathcal{T} to denote a (separable) Hilbert space and an invertible antilinear operator acting in \mathcal{H}, respectively. For $\mathcal{H}=L^{2}\left(\mathbb{R}^{d}\right)$, we define \mathcal{T} by [9]

$$
\begin{equation*}
(\mathcal{T} \psi)(\vec{x}):=\psi(\vec{x})^{*}, \tag{1}
\end{equation*}
$$

for all $\psi \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\vec{x} \in \mathbb{R}^{d}$. For $\mathcal{H}=\mathbb{C}^{N}$, we identify it with complex conjugation: for all $\vec{z} \in \mathbb{C}^{N}$,

$$
\begin{equation*}
\mathcal{T} \vec{z}:=\vec{z}^{*} \tag{2}
\end{equation*}
$$

2. $\mathcal{Q T}$-symmetry

Consider a Hamiltonian operator H acting in \mathcal{H} and commuting with an arbitrary invertible antilinear operator Θ. Because \mathcal{T} is also invertible and antilinear, we can express Θ as $\Theta=\mathcal{Q T}$ where $\mathcal{Q}:=\Theta \mathcal{T}$ is an invertible linear operator. This suggests the investigation of $\mathcal{Q T}$-symmetric Hamiltonians H,

$$
\begin{equation*}
[H, \mathcal{Q T}]=0 \tag{3}
\end{equation*}
$$

where \mathcal{Q} is an invertible linear operator. Note that \mathcal{Q} need not be a hermitian operator or an involution, i.e., in general $\mathcal{Q}^{\dagger} \neq \mathcal{Q}$ and $\mathcal{Q}^{2} \neq 1$.

We can easily rewrite (3) in the form

$$
\begin{equation*}
\mathcal{T} H \mathcal{T}=\mathcal{Q}^{-1} H \mathcal{Q} \tag{4}
\end{equation*}
$$

This is similar to the condition that H is \mathcal{Q}^{-1}-weakly-pseudo-hermitian [12-15]:

$$
\begin{equation*}
H^{\dagger}=\mathcal{Q}^{-1} H \mathcal{Q} \tag{5}
\end{equation*}
$$

In fact, (4) and (5) coincide if and only if

$$
\begin{equation*}
\mathcal{T} H^{\dagger} \mathcal{T}=H \tag{6}
\end{equation*}
$$

The left-hand side of this relation is the usual 'transpose' of H that we denote by H^{t}. Therefore, $\mathcal{Q T}$-symmetry is equivalent to \mathcal{Q}^{-1}-weak-pseudo-hermiticity if and only if $H^{t}=H$, i.e., H
${ }^{2}$ The adjoint A^{\dagger} of an operator $A: \mathcal{H} \rightarrow \mathcal{H}$ is defined by the condition $\langle\psi \mid A \phi\rangle=\left\langle A^{\dagger} \mid \phi\right\rangle$, where $\langle\cdot \mid \cdot\rangle$ is the defining inner product of the Hilbert space \mathcal{H}.
${ }^{3}$ This means that $\mathcal{P} \mathcal{T}\left(a_{1} \psi_{1}+a_{2} \psi_{2}\right)=a_{1}^{*} \mathcal{P} \mathcal{T} \psi_{1}+a_{2}^{*} \mathcal{P} \mathcal{T} \psi_{2}$, where a_{1}, a_{2} are complex numbers and ψ_{1}, ψ_{2} are state vectors.
${ }^{4}$ Otherwise, H has a spectral singularity and it cannot define a unitary time-evolution regardless of the choice of the inner product.
is symmetric ${ }^{5}$. For example, let \vec{a} and v be respectively complex vector and scalar potentials, $\vec{x} \in \mathbb{R}^{d}$ and $d \in \mathbb{Z}^{+}$. Then the Hamiltonian ${ }^{6}$

$$
\begin{equation*}
H=\frac{[\vec{p}-\vec{a}(\vec{x})]^{2}}{2 m}+v(\vec{x}) \tag{7}
\end{equation*}
$$

is symmetric if and only if $\vec{a}=\overrightarrow{0}$. Supposing that \vec{a} and v are analytic functions, the $\mathcal{Q T}$-symmetry of (7), i.e., (4) is equivalent to

$$
\begin{equation*}
\frac{\left[\vec{p}+\vec{a}(\vec{x})^{*}\right]^{2}}{2 m}+v(\vec{x})^{*}=\frac{\left[\vec{p}_{\mathcal{Q}}-\vec{a}\left(\vec{x}_{\mathcal{Q}}\right)\right]^{2}}{2 m}+v\left(\vec{x}_{\mathcal{Q}}\right) \tag{8}
\end{equation*}
$$

where for any linear operator $L: \mathcal{H} \rightarrow \mathcal{H}$, we have $L_{\mathcal{Q}}:=\mathcal{Q}^{-1} L \mathcal{Q}$. Similarly, the \mathcal{Q}^{-1}-weak-pseudo-hermiticity of H, i.e., (5) means

$$
\begin{equation*}
\frac{\left[\vec{p}-\vec{a}(\vec{x})^{*}\right]^{2}}{2 m}+v(\vec{x})^{*}=\frac{\left[\vec{p}_{\mathcal{Q}}-\vec{a}\left(\vec{x}_{\mathcal{Q}}\right)\right]^{2}}{2 m}+v\left(\vec{x}_{\mathcal{Q}}\right) \tag{9}
\end{equation*}
$$

As seen from (8) and (9), there is a one-to-one correspondence between $\mathcal{Q T}$-symmetric and \mathcal{Q}^{-1}-weak-pseudo-hermitian Hamiltonians of the standard form (7), namely that given such a $\mathcal{Q T}$-symmetric Hamiltonian H with vector and scalar potentials v and a, there is a \mathcal{Q}^{-1}-weak-pseudo-hermitian Hamiltonian H^{\prime} with vector and scalar potentials $v^{\prime}=v$ and $a^{\prime}=\mathrm{i} a$. Note, however, that H and H^{\prime} are not generally isospectral.

3. A class of matrix models

Consider two-level matrix models defined on the Hilbert space $\mathcal{H}=\mathbb{C}^{2}$ endowed with the Euclidean inner product $\langle\cdot \mid \cdot\rangle$. In the following, we explore the $\mathcal{Q T}$-symmetry and \mathcal{Q}^{-1}-weak-pseudo-hermiticity of a general Hamiltonian $H=\left(\begin{array}{ll}\mathfrak{a} & \mathfrak{b} \\ \mathfrak{c} & \mathfrak{d}\end{array}\right)$ for $\mathcal{Q}=\left(\begin{array}{ll}1 & 0 \\ \mathfrak{q} & 1\end{array}\right)$, where $\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \mathfrak{q} \in \mathbb{C}$.

3.1. $\mathcal{Q T}$-symmetric two-level systems

Imposing the condition that H is $\mathcal{Q T}$-symmetric (i.e., equation (4) holds) restricts \mathfrak{q} to real and imaginary values, and leads to the following forms for the Hamiltonian.

- For real \mathfrak{q} :

$$
H=\left(\begin{array}{ll}
a & 0 \tag{10}\\
c & a
\end{array}\right), \quad a, c \in \mathbb{R}
$$

In this case, H is a non-diagonalizable operator with a real spectrum consisting of a.

- For imaginary $\mathfrak{q}(\mathfrak{q}=\mathrm{i} q$ with $q \in \mathbb{R}-\{0\})$:

$$
H=\left(\begin{array}{cc}
a-\frac{\mathrm{i}}{2} b q & b \tag{11}\\
c+\frac{\mathrm{i}}{2}(a-d) q & d+\frac{\mathrm{i}}{2} b q
\end{array}\right), \quad a, b, c, d \in \mathbb{R}
$$

In this case the eigenvalues of H are given by $E_{ \pm}=\frac{1}{2}\left[a+d \pm \sqrt{(a-d)^{2}-b\left(b q^{2}-4 c\right)}\right]$. Therefore, for $(a-d)^{2} \geqslant b\left(b q^{2}-4 c\right), H$ is a diagonalizable operator with a real spectrum;
${ }^{5}$ It is a common practice to identify operators with matrices and define the transpose of an operator H as the operator whose matrix representation is the transpose of the matrix representation of H. Because one must use a basis to determine the matrix representation, unlike $H^{t}:=\mathcal{T} H^{\dagger} \mathcal{T}$, this definition of transpose is basis-dependent. Note however that H^{t} agrees with this definition if one uses the position basis $\{|\vec{x}\rangle\}$ in $L^{2}\left(\mathbb{R}^{d}\right)$ and the standard basis in \mathbb{C}^{N}.
${ }^{6}$ Non-hermitian Hamiltonians of this form have been used in modeling localization effects in condensed matter physics [16].
and for $(a-d)^{2}<b\left(b q^{2}-4 c\right), H$ is diagonalizable but its spectrum consists of a pair of (complex-conjugate) non-real eigenvalues. Furthermore, the degeneracy condition $(a-d)^{2}=b\left(b q^{2}-4 c\right)$ marks an exceptional spectral point $[10,11]$ where H becomes non-diagonalizable. In fact, for $a=d$ and $b=0$ this condition is satisfied and H takes the form (10). Therefore, (11) gives the general form of $\mathcal{Q T}$-symmetric Hamiltonians provided that $q \in \mathbb{R}$.

3.2. \mathcal{Q}^{-1}-weakly-pseudo-hermitian two-level systems

Demanding that H is \mathcal{Q}^{-1}-weakly-pseudo-hermitian does not pose any restriction on the value of \mathfrak{q}. It yields the following forms for the Hamiltonian.

- For $\mathfrak{q}=0$:

$$
H=\left(\begin{array}{cc}
a & b_{1}+\mathrm{i} b_{2} \tag{12}\\
b_{1}-\mathrm{i} b_{2} & d
\end{array}\right), \quad a, b_{1}, b_{2}, d \in \mathbb{R}
$$

In this case \mathcal{Q} is the identity operator and $H=H^{\dagger}$. Therefore, H is a diagonalizable operator with a real spectrum.

- For $\mathfrak{q} \neq 0$:

$$
H=\left(\begin{array}{cc}
a_{1}+\mathrm{i} a_{2} & -\frac{2 \mathrm{i} a_{2}}{\mathfrak{q}} \tag{13}\\
\frac{2 \mathrm{i} a_{2}}{\mathfrak{q}^{*}} & a_{1}-\mathrm{i} a_{2}
\end{array}\right), \quad a_{1}, a_{2} \in \mathbb{R}, \quad \mathfrak{q} \in \mathbb{C}-\{0\} .
$$

In this case the eigenvalues of H are given by $E_{ \pm}=a_{1} \pm\left|a_{2}\right||\mathfrak{q}|^{-1} \sqrt{4-|\mathfrak{q}|^{2}}$. Therefore, for $|\mathfrak{q}|<2, H$ is a diagonalizable operator with a real spectrum; and for $|\mathfrak{q}|>2, H$ is diagonalizable but its spectrum consists of a pair of (complex-conjugate) non-real eigenvalues. Again the degenerate case: $|\mathfrak{q}|=2$ corresponds to an exceptional point where H becomes non-diagonalizable.
Comparing (11) with (12) and (13) we see that $\mathcal{Q T}$-symmetry and \mathcal{Q}^{-1}-weak-pseudohermiticity are totally different conditions on a general non-symmetric Hamiltonian ${ }^{7}$. For a symmetric Hamiltonian, we can easily show using (12) and (13) that \mathfrak{q} is either real or imaginary and that H takes the form (11). The converse is also true, i.e., any symmetric Hamiltonian of the form (11) is either real (and hence hermitian) or has the form (13). In summary, $\mathcal{Q T}$-symmetry and \mathcal{Q}^{-1}-weak-pseudo-hermiticity coincide if and only if the Hamiltonian is a symmetric matrix.

4. Unitary \mathcal{Q} and a class of non- $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians with a pseudo-real spectrum

If \mathcal{Q} is a unitary operator, the \mathcal{Q}^{-1}-weak-pseudo-hermiticity (5) of a Hamiltonian H implies its \mathcal{Q}-weak-pseudo-hermiticity, i.e., $H^{\dagger}=\mathcal{Q}^{-1} H \mathcal{Q}$. This together with (5) leads in turn to

$$
\begin{equation*}
\left[H, \mathcal{Q}^{2}\right]=0 \tag{14}
\end{equation*}
$$

i.e., \mathcal{Q}^{2} is a symmetry generator. In the following, we examine some simple unitary choices for \mathcal{Q} and determine the form of the \mathcal{Q}^{-1}-weak-pseudo-hermitian and $\mathcal{Q T}$-symmetric standard Hamiltonians.

[^0]Consider a standard non-hermitian Hamiltonian (7) in one dimension and let

$$
\begin{equation*}
\mathcal{Q}=\mathrm{e}^{\mathrm{i} \frac{i}{}{ }^{\prime}} \tag{15}
\end{equation*}
$$

for some $\ell \in \mathbb{R}^{+}$. Then introducing

$$
a_{1}:=\mathfrak{R}(a), \quad a_{2}:=\Im(a), \quad v_{1}:=\mathfrak{R}(v), \quad v_{2}:=\Im(v),
$$

where \mathfrak{F} and \mathfrak{J} stand for the real and imaginary parts of their argument, and using the identities

$$
\begin{equation*}
\mathcal{Q}^{-1} p \mathcal{Q}=p, \quad \mathcal{Q}^{-1} x \mathcal{Q}=x-\ell \tag{16}
\end{equation*}
$$

we can express the condition of the \mathcal{Q}^{-1}-weak-pseudo-hermiticity of H, namely (9), in the form

$$
\begin{array}{ll}
a_{1}(x-\ell)=a_{1}(x), & a_{2}(x-\ell)=-a_{2}(x) \\
v_{1}(x-\ell)=v_{1}(x), & v_{2}(x-\ell)=-v_{2}(x) \tag{18}
\end{array}
$$

This means that the real parts of the vector and scalar potentials are periodic functions with period ℓ while their imaginary parts are antiperiodic with period ℓ. This confirms (14), for H is invariant under the translation, $x \rightarrow x+2 \ell$, generated by \mathcal{Q}^{2}. We can express a_{1}, v_{1} and a_{2}, v_{2} in terms of their Fourier series. These have, respectively, the following forms
ℓ-periodic real parts: $\sum_{n=0}^{\infty}\left[c_{1 n} \cos \left(\frac{2 n \pi x}{\ell}\right)+d_{1 n} \sin \left(\frac{2 n \pi x}{\ell}\right)\right]$,
ℓ-antiperiodic imaginary parts: $\sum_{n=0}^{\infty}\left[c_{2 n} \cos \left(\frac{(2 n+1) \pi x}{\ell}\right)+d_{2 n} \sin \left(\frac{(2 n+1) \pi x}{\ell}\right)\right]$,
where $c_{k n}$ and $d_{k n}$ are real constants for all $k \in\{1,2\}$ and $n \in\{0,1,2, \ldots\}$.
Conversely, if the real and imaginary parts of both the vector and scalar potentials have respectively the form (19) and (20), the Hamiltonian is \mathcal{Q}^{-1}-weak-pseudo-hermitian. In particular its spectrum is pseudo-real; its complex eigenvalues come in complex-conjugate pairs. These Hamiltonians that are generally non- $\mathcal{P T}$-symmetric acquire $\mathcal{Q T}$-symmetry provided that they are symmetric, i.e., $a_{1}=a_{2}=0$. A simple example is

$$
H=\frac{p^{2}}{2 m}+\lambda_{1} \sin (2 k x)+\mathrm{i} \lambda_{2} \cos (5 k x)
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $k:=\ell^{-1} \in \mathbb{R}^{+}$.
Next, we examine the condition of $\mathcal{Q T}$-symmetry of H, i.e. (8). In view of (16), this condition is equivalent to (18) and

$$
\begin{equation*}
a_{1}(x-\ell)=-a_{1}(x), \quad a_{2}(x-\ell)=a_{2}(x) \tag{21}
\end{equation*}
$$

which replaces (17). Therefore, v has the same form as for the case of a \mathcal{Q}^{-1}-weak-pseudohermitian Hamiltonian but a has ℓ-antiperiodic real and ℓ-periodic imaginary parts. In particular, the Fourier series for the real and imaginary parts of a have respectively the form (20) and (19).

We again see that general $\mathcal{Q T}$-symmetric Hamiltonians of the standard form (7) are invariant under the translation $x \rightarrow x+2 \ell$. This is indeed to be expected, because in view of $[\mathcal{Q}, \mathcal{T}]=0$ we can express (4) in the form

$$
\begin{equation*}
H=\mathcal{Q}^{-1} \mathcal{T} H \mathcal{T} \mathcal{Q} \tag{22}
\end{equation*}
$$

and use this identity to establish

$$
\mathcal{Q}^{2} H=\mathcal{Q T} H \mathcal{T} \mathcal{Q}=\mathcal{Q} \mathcal{T}\left(\mathcal{Q}^{-1} \mathcal{T} H \mathcal{T} \mathcal{Q}\right) \mathcal{T} \mathcal{Q}=H \mathcal{Q}^{2} .
$$

The results obtained in this section admit a direct generalization to higher-dimensional standard Hamiltonians. This involves identifying \mathcal{Q} with a translation operator of the form $\mathrm{e}^{\frac{i \vec{\ell} \cdot \vec{p}}{h}}$ for some $\vec{\ell} \in \mathbb{R}^{3}-\{\overrightarrow{0}\}$. It yields $\mathcal{Q T}$-symmetric and \mathcal{Q}^{-1}-weakly-pseudo-hermitian Hamiltonians with a pseudo-real spectrum that are invariant under the translation $\vec{x} \rightarrow \vec{x}-2 \vec{\ell}$.

An alternative generalization of the results of this section to (two and) three dimensions is to identify \mathcal{Q} with a rotation operator:

$$
\begin{equation*}
\mathcal{Q}=\mathrm{e}^{\frac{\mathrm{iqh} \hat{n} \cdot \mathrm{~J}}{h}} \tag{23}
\end{equation*}
$$

where $\varphi \in(0,2 \pi), \hat{n}$ is a unit vector in \mathbb{R}^{3} and \vec{J} is the angular momentum operator. Again $[\mathcal{Q}, \mathcal{T}]=0$ and we obtain generally non- $\mathcal{P} \mathcal{T}$-symmetric, \mathcal{Q}^{-1}-weak-pseudo-hermitian and $\mathcal{Q T}$-symmetric Hamiltonians with a pseudo-real spectrum that are invariant under rotations by an angle 2φ about the axis defined by \hat{n}.

Choosing a cylindrical coordinate system whose z-axis is along \hat{n}, we can obtain the general form of such standard Hamiltonians.

The \mathcal{Q}^{-1}-weak-pseudo-hermiticity of H implies that the real and imaginary parts of the vector and scalar potentials (that we identify with labels 1 and 2 , respectively) satisfy

$$
\begin{array}{ll}
\vec{a}_{1}(\rho, \theta-\varphi, z)=\vec{a}_{1}(\rho, \theta, z), & \vec{a}_{2}(\rho, \theta-\varphi, z)=-\vec{a}_{2}(\rho, \theta, z) \\
v_{1}(\rho, \theta-\varphi, z)=v_{1}(\rho, \theta, z), & v_{2}(\rho, \theta-\varphi, z)=-v_{1}(\rho, \theta, z) \tag{25}
\end{array}
$$

where (ρ, θ, z) stand for cylindrical coordinates. Similarly, the $\mathcal{Q T}$-symmetry yields (25) and

$$
\begin{equation*}
\vec{a}_{1}(\rho, \theta-\varphi, z)=-\vec{a}_{1}(\rho, \theta, z), \quad \vec{a}_{2}(\rho, \theta-\varphi, z)=\vec{a}_{2}(\rho, \theta, z) \tag{26}
\end{equation*}
$$

Again we can derive the general form of the Fourier series for these potentials. Here, we suffice to give the form of the general symmetric Hamiltonian:

$$
\begin{align*}
H= & \frac{\vec{p}^{2}}{2 m}+\sum_{n=0}^{\infty}\left[e_{n}(\rho, z) \cos (2 n \omega \theta)+f_{n}(\rho, z) \sin (2 n \omega \theta)\right. \\
& \left.+\mathrm{i}\left\{g_{n}(\rho, z) \cos [(2 n+1) \omega \theta]+h_{n}(\rho, z) \sin [(2 n+1) \omega \theta]\right\}\right] \tag{27}
\end{align*}
$$

where e_{n}, f_{n}, g_{n} and h_{n} are real-valued functions and $\omega:=\varphi^{-1} \in \mathbb{R}^{+}$.

5. A $\mathcal{Q} \mathcal{T}$-symmetric and non- $\mathcal{P} \mathcal{T}$-symmetric Hamiltonian with a real spectrum

In the preceding section we examined $\mathcal{Q T}$-symmetric Hamiltonians with a unitary \mathcal{Q}. Because \mathcal{P} is also a unitary operator, $\mathcal{Q} \mathcal{T}$-symmetry with unitary \mathcal{Q} may be considered as a less drastic generalization of $\mathcal{P} \mathcal{T}$-symmetry. In this section we explore a $\mathcal{Q T}$-symmetric model with a non-unitary \mathcal{Q}.

Let a and a^{\dagger} be the bosonic annihilation and creation operators acting in $L^{2}(\mathbb{R})$ and satisfying $\left[a, a^{\dagger}\right]=1, \mathfrak{q} \in \mathbb{C}-\{0\}$, and ${ }^{8}$

$$
\begin{equation*}
\mathcal{Q}:=\mathrm{e}^{\mathrm{q} a} . \tag{28}
\end{equation*}
$$

Consider the Hamiltonian operator

$$
\begin{equation*}
H=\alpha a^{2}+\beta a^{\dagger^{2}}+\gamma\left\{a, a^{\dagger}\right\}+\mathfrak{m} a+\mathfrak{n} a^{\dagger} \tag{29}
\end{equation*}
$$

where $\alpha, \beta, \gamma, \mathfrak{m}, \mathfrak{n} \in \mathbb{C}$, and demand that H be $\mathcal{Q T}$-symmetric. Inserting (29) in (4) and using (1) and the identity $\mathcal{Q}^{-1} a^{\dagger} \mathcal{Q}=a^{\dagger}-\mathfrak{q}$, we obtain

$$
\alpha^{*}=\alpha, \quad \beta^{*}=\beta, \quad \gamma^{*}=\gamma, \quad \mathfrak{m}^{*}=\mathfrak{m}-2 \gamma \mathfrak{q}, \quad \mathfrak{n}^{*}=\mathfrak{n}-2 \beta \mathfrak{q}, \quad \mathfrak{n} \mathfrak{q}=0 .
$$

[^1]In particular, because $\mathfrak{q} \neq 0$, we have $\mathfrak{n}=0$ which in turn implies $\beta=0$. Furthermore, assuming that $\gamma \neq 0$, we find that \mathfrak{q} must be purely imaginary, $\mathfrak{q}=\mathrm{i} q$ with $q \in \mathbb{R}-\{0\}$, and $\mathfrak{J}(\mathfrak{m})=\gamma q$. In view of these observations, H takes the following simple form,

$$
\begin{equation*}
H=\alpha a^{2}+\gamma\left\{a, a^{\dagger}\right\}+(\mu+\mathrm{i} \gamma q) a \tag{30}
\end{equation*}
$$

where $\mu:=\mathfrak{R}(\mathfrak{m}), \alpha, \mu \in \mathbb{R}$, and $\gamma, q \in \mathbb{R}-\{0\}$.
Recalling that $\mathcal{P} a \mathcal{P}=-a$ and $\mathcal{T} a \mathcal{T}=a$, we see that for $\mu \neq 0$, the $\mathcal{Q T}$-symmetric Hamiltonian (30) is non- $\mathcal{P T}$-symmetric. We also expect that it must have a pseudo-real spectrum. It turns out that actually the spectrum of H can be computed exactly.

To obtain the spectrum of H we use its representation in the basis consisting of the standard normalized eigenvectors $|n\rangle$ of the number operator $a^{\dagger} a$. Using the following well-known properties of $|n\rangle$ [19],

$$
a|n\rangle=\sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle,
$$

we find for all $m, n \in\{0,1,2, \ldots\}$,
$H_{m n}:=\langle m| H|n\rangle=\gamma(2 n+1) \delta_{m n}+(\mu+\mathrm{i} \gamma q) \sqrt{n} \delta_{m, n-1}+\alpha \sqrt{n(n-1)} \delta_{m, n-2}$.
As seen from this relation the matrix $\left(H_{m n}\right)$ is upper-triangular with distinct diagonal entries and up to three nonzero terms in each row. This implies that the eigenvalues E_{n} of $\left(H_{m n}\right)$ are identical with its diagonal entries, i.e., $E_{n}=\gamma(2 n+1)$. In particular, H has a discrete, equally spaced, real spectrum that is positive for $\gamma>0$. In the latter case, H is isospectral to a simple harmonic oscillator Hamiltonian with ground-state energy γ.

It is not difficult to see that for each $n \in\{0,1,2, \ldots\}$ the span of $\{|0\rangle,|1\rangle, \ldots,|n\rangle\}$, which we denote by \mathcal{H}_{n}, is an invariant subspace of H. This observation allows for the construction of a complete set of eigenvectors of H and establishes the fact that H is a diagonalizable operator with a discrete real spectrum. Therefore, in view of a theorem proven in [20], it is related to a hermitian operator via a similarity transformation, i.e., it is quasi-hermitian [21].

The existence of the invariant subspace \mathcal{H}_{n} also implies that the eigenvectors $\left|\psi_{n}\right\rangle$ of H corresponding to the eigenvalue E_{n} belong to \mathcal{H}_{n}, i.e., $\left|\psi_{n}\right\rangle$ is a linear combination of $|0\rangle,|1\rangle, \ldots,|n-1\rangle$ and $|n\rangle$. This in turn allows for a calculation of $\left|\psi_{n}\right\rangle$. For example,

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=c_{0}|0\rangle, \quad\left|\psi_{1}\right\rangle=c_{1}\left[|0\rangle+\left(\frac{2 \gamma}{\mathfrak{m}}\right)|1\rangle\right] \\
& \left|\psi_{2}\right\rangle=c_{2}\left[|0\rangle+\left(\frac{4 \gamma \mathfrak{m}}{\mathfrak{m}^{2}+\alpha \gamma}\right)|1\rangle+\left(\frac{2 \sqrt{2} \gamma^{2}}{\mathfrak{m}^{2}+\alpha \gamma}\right)|2\rangle\right]
\end{aligned}
$$

where c_{0}, c_{1}, c_{2} are arbitrary nonzero normalization constants and $\mathfrak{m}=\mu+\mathrm{i} \gamma q$.

6. Concluding remarks

It is often stated that $\mathcal{P} \mathcal{T}$-symmetry is a special case of pseudo-hermiticity because $\mathcal{P} \mathcal{T}$ symmetric Hamiltonians are manifestly \mathcal{P}-pseudo-hermitian. This reasoning is only valid for symmetric Hamiltonians H that satisfy $H^{\dagger}=\mathcal{T} H \mathcal{T}$. In general to establish the claim that $\mathcal{P} \mathcal{T}$-symmetry is a special case of pseudo-hermiticity one needs to make use of the spectral theorems of [12, 17, 18]. Indeed what makes $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians interesting is the pseudo-reality of their spectrum. This is a general property of all Hamiltonians that are weakly pseudo-hermitian or possess a symmetry that is generated by an invertible antilinear operator. We call the latter $\mathcal{Q T}$-symmetric.

In this paper, we have examined in some detail the similarities and differences between $\mathcal{Q T}$-symmetry and \mathcal{Q}^{-1}-weak-pseudo-hermiticity and obtained large classes of symmetric
as well as asymmetric non- $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians that share the spectral properties of the $\mathcal{P T}$-symmetric Hamiltonians. In particular, we considered the case that \mathcal{Q} is a unitary operator and showed that in this case $\mathcal{Q T}$-symmetry and \mathcal{Q}^{-1}-weak-pseudo-hermiticity imply \mathcal{Q}^{2}-symmetry of the Hamiltonian. We also explored a concrete example of a $\mathcal{Q T}$-symmetric Hamiltonian with a non-unitary \mathcal{Q} that is not $\mathcal{P} \mathcal{T}$-symmetric. We determined the spectrum of this Hamiltonian, established its diagonalizability and showed that it is indeed quasi-hermitian.

References

[1] Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 711095
[2] Mostafazadeh A and Batal A 2004 J. Phys. A: Math. Gen. 3711645
[3] Mostafazadeh A 2005 J. Phys. A: Math. Gen. 386557
[4] Mostafazadeh A 2004 Preprint quant-ph/0407070
[5] Bender C M, Brody D C and Jones H F 2004 Phys. Rev. Lett. 92119902
[6] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
[7] Mostafazadeh A 2002 J. Math. Phys. 433944
[8] Mostafazadeh A 2006 J. Phys. A: Math. Gen. 3910171
[9] Isham C J 1995 Lectures on Quantum Theory (London: Imperial College Press)
[10] Kato T 1995 Perturbation Theory for Linear Operators (Berlin: Springer)
[11] Heiss W D 2004 J. Phys. A: Math. Gen. 372455
[12] Solombrino L 2002 J. Math. Phys. 435439
[13] Bagchi B and Quesne C 2002 Phys. Lett. A 301173
[14] Znojil M 2006 Phys. Lett. A 353463
[15] Mostafazadeh A 2006 J. Math. Phys. 47092101
[16] Hatano N and Nelson D R 1997 Phys. Rev. B 568651 Hatano N and Nelson D R 1998 Phys. Rev. B 588384
[17] Mostafazadeh A 2002 J. Math. Phys. 43205 Mostafazadeh A 2002 J. Math. Phys. 436343 Mostafazadeh A 2003 J. Math. Phys. 44943 (erratum)
[18] Scolarici G and Solombrino L 2003 J. Math. Phys. 444450
[19] Sakurai J J 1994 Modern Quantum Mechanics (New York: Addisson-Wesley)
[20] Mostafazadeh A 2002 J. Math. Phys. 432814
[21] Scholtz F G, Geyer H B and Hahne F J W 1992 Ann. Phys., NY 21374

[^0]: ${ }^{7}$ Note that this is not in conflict with the fact that in view of the spectral theorems of [12, 17, 18] both of these conditions imply pseudo-hermiticity of the Hamiltonian albeit with respect to a pseudo-metric operator that differs from $\mathcal{Q}^{-1}[15]$.

[^1]: 8 The \mathcal{Q} considered in section 3 may be viewed as a fermionic analog of (28).

